Measuring the Effect of the Zero Lower Bound on Medium- and Longer-Term Interest Rates

Eric T. Swanson John C. Williams

Federal Reserve Bank of San Francisco

AEA Meetings, San Diego January 5, 2013

Three Motivating Observations

New Keynesian IS curve:

Motivation

•000

$$y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t$$
$$= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t$$

New Keynesian IS curve:

Motivation

•000

$$y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t$$
$$= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t$$

Three Motivating Observations

New Keynesian IS curve:

$$y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t$$
$$= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t$$

Brian Sack: "The best measure of the stance of monetary policy is the 2-year Treasury yield." New Keynesian IS curve:

Motivation

0000

$$y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t$$
$$= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t$$

- Brian Sack: "The best measure of the stance of monetary policy is the 2-year Treasury yield."
- The zero lower bound is not a substantial constraint on monetary policy if the central bank can affect longer-term interest rates:

Three Motivating Observations

New Keynesian IS curve:

$$y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t$$
$$= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t$$

- Brian Sack: "The best measure of the stance of monetary policy is the 2-vear Treasury vield."
- The zero lower bound is not a substantial constraint on monetary policy if the central bank can affect longer-term interest rates:
 - Reifschneider-Williams (2000), Eggertsson-Woodford (2003)
 - Gürkaynak, Sack, and Swanson (2005): 60–90% of the response of 2- to 10-year Treasury yields to FOMC announcements is due to *statement*, not funds rate

2-Year Treasury Yield \gg 0 for Much of 2008–10

2-Year Treasury Yield >> 0 for Much of 2008-10

Conclusions

Questions We Address

- Was the ZLB a substantial constraint on monetary policy?
 e.g., was the 2-year Treasury yield constrained?
- If so, when?

Motivation

0000

• And how severely?

Questions We Address

- Was the ZLB a substantial constraint on monetary policy?
 e.g., was the 2-year Treasury yield constrained?
- If so, when?

Motivation

• And how severely?

Implications for fiscal as well as monetary policy:

- Several papers show fiscal multiplier larger when ZLB binds (Christiano-Eichenbaum-Rebelo 2011, Erceg-Lindé 2010, Eggertsson-Krugman 2011)
- But did ZLB constrain yields that matter for private-sector spending?

- Empirical:
 - We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000)
 - And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.

- Empirical:
 - We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000)
 - And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.
- Modeling:
 - Simple NK model with ZLB motivates empirical specification
 - Shows ZLB able to explain all of our results

- Empirical:
 - We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000)
 - And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.
- Modeling:
 - Simple NK model with ZLB motivates empirical specification
 - Shows ZLB able to explain all of our results

The level of yields alone is not a good measure of ZLB constraint:

- Empirical:
 - We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000)
 - And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.
- Modeling:
 - Simple NK model with ZLB motivates empirical specification
 - Shows ZLB able to explain all of our results

The level of yields alone is not a good measure of ZLB constraint:

- No way to measure severity or statistical significance
 —e.g., is a 50 bp 2-year Treasury yield constrained or not?
 - Crowding out, fiscal multiplier determined by response of yields to fiscal policy, not level of yields
 - Effective lower bound may be ≫ 0, e.g. 50bp in the UK

Measure Treasury yield sensitivity to news in normal times using a high-frequency regression:

$$\Delta y_t = \alpha + \beta X_t + \varepsilon_t$$

Measuring Treasury Yield Sensitivity to News

Measure Treasury yield sensitivity to news in normal times using a high-frequency regression:

$$\Delta y_t = \alpha + \beta X_t + \varepsilon_t$$

- regression is at daily frequency
- Δy_t denotes one-day change in Treasury yield on date t
- X_t is a vector of surprises in macroeconomic data releases (GDP, CPI, nonfarm payrolls, etc.) on date t
- ullet ε_t denotes effects of other news and other factors on yields

Measuring Treasury Yield Sensitivity to News

Measure Treasury yield sensitivity to news in normal times using a high-frequency regression:

$$\Delta y_t = \alpha + \beta X_t + \varepsilon_t$$

- regression is at daily frequency
- Δy_t denotes one-day change in Treasury yield on date t
- X_t is a vector of surprises in macroeconomic data releases (GDP, CPI, nonfarm payrolls, etc.) on date t
- ullet ε_t denotes effects of other news and other factors on yields

Surprise component of data release: $x_t - E_{t-1}x_t$.

Market expectation of macroeconomic data releases measured by Money Market Services, Bloomberg surveys.

Discussion

Time-varying sensitivity version:

Motivation

$$\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t$$

where δ^{i} scalar, $i \in 1990, 1991, ..., 2012$.

Measuring Time-Varying Sensitivity to News

Time-varying sensitivity version:

$$\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t$$

where δ^{i} scalar, $i \in 1990, 1991, ..., 2012$.

- Assumption: *relative* responses β constant over time
- Estimate δ^i , β by nonlinear least squares
- Normalize δ^i so that average δ^i from 1990–2000 is 1

Nonlinear Regression Results for β , 1990–2012

Treasury yield maturity

	3-n	nonth	2-	year	10-	-year
Capacity Util.	0.72	(1.52)	1.48	(2.89)	0.83	(2.48)
Consumer Conf.	0.76	(2.90)	1.37	(3.72)	0.88	(2.50)
Core CPI	0.40	(1.91)	1.91	(5.01)	1.27	(3.82)
GDP	0.93	(3.17)	1.44	(2.41)	0.98	(1.70)
Initial Claims	-0.30	(-1.81)	-1.10	(-5.35)	-0.98	(-5.08)
ISM Manufact.	1.24	(3.23)	2.74	(7.09)	2.02	(5.97)
New Home Sales	0.84	(2.63)	0.66	(1.99)	0.52	(1.96)
Nonfarm Payrolls	3.06	(7.67)	4.84	(9.55)	2.96	(6.73)
Retail Sales	0.84	(3.77)	1.87	(4.91)	1.60	(4.18)
Unemployment	-1.23	(-3.51)	-1.26	(-2.77)	-0.35	(-0.88)

# Observations	2747	2747	2747
R^2	.08	.17	.10
$H_0: \beta = 0$, p-value	$< 10^{-16}$	$< 10^{-16}$	$< 10^{-16}$

Nonlinear Regression Results for β , 1990–2012

Treasury yield maturity

	3-m	nonth	2-	year	10-	year
Capacity Util.	0.72	(1.52)	1.48	(2.89)	0.83	(2.48)
Consumer Conf.	0.76	(2.90)	1.37	(3.72)	0.88	(2.50)
Core CPI	0.40	(1.91)	1.91	(5.01)	1.27	(3.82)
GDP	0.93	(3.17)	1.44	(2.41)	0.98	(1.70)
Initial Claims	-0.30	(-1.81)	-1.10	(-5.35)	-0.98	(-5.08)
ISM Manufact.	1.24	(3.23)	2.74	(7.09)	2.02	(5.97)
New Home Sales	0.84	(2.63)	0.66	(1.99)	0.52	(1.96)
Nonfarm Payrolls	3.06	(7.67)	4.84	(9.55)	2.96	(6.73)
Retail Sales	0.84	(3.77)	1.87	(4.91)	1.60	(4.18)
Unemployment	-1.23	(-3.51)	-1.26	(-2.77)	-0.35	(-0.88)

# Observations	2747	2747	2747
R^2	.08	.17	.10
$H_0: \beta = 0, p$ -value	$< 10^{-16}$	$< 10^{-16}$	$< 10^{-16}$
$H_0: \beta$ constant, p -value	1.000	1.000	1.000

Nonlinear Regression Results for β , 1990–2012

Treasury yield maturity

	3-n	nonth	2-	year	10-	-year
Capacity Util.	0.72	(1.52)	1.48	(2.89)	0.83	(2.48)
Consumer Conf.	0.76	(2.90)	1.37	(3.72)	0.88	(2.50)
Core CPI	0.40	(1.91)	1.91	(5.01)	1.27	(3.82)
GDP	0.93	(3.17)	1.44	(2.41)	0.98	(1.70)
Initial Claims	-0.30	(-1.81)	-1.10	(-5.35)	-0.98	(-5.08)
ISM Manufact.	1.24	(3.23)	2.74	(7.09)	2.02	(5.97)
New Home Sales	0.84	(2.63)	0.66	(1.99)	0.52	(1.96)
Nonfarm Payrolls	3.06	(7.67)	4.84	(9.55)	2.96	(6.73)
Retail Sales	0.84	(3.77)	1.87	(4.91)	1.60	(4.18)
Unemployment	-1.23	(-3.51)	-1.26	(-2.77)	-0.35	(-0.88)

# Observations	2747	2747	2747
R^2	.08	.17	.10
$H_0: \beta = 0, p$ -value	$< 10^{-16}$	$< 10^{-16}$	$< 10^{-16}$
$H_0: \beta$ constant, p -value	1.000	1.000	1.000
$H_0: \delta$ constant, p -value	$< 10^{-16}$	$< 10^{-10}$.016

$$\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t \tag{*}$$

$$\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t \tag{*}$$

To study time-varying δ in finer detail, run daily rolling regressions:

- Use $\hat{\beta}$ from (*) to define "generic surprise" regressor $\hat{\beta}X_t$
- Estimate:

$$\Delta y_t = \alpha^{\tau} + \delta^{\tau} \hat{\beta} X_t + \varepsilon_t$$

where sample is 1-year rolling window centered around date au

• When $\tau =$ midpoint of year i, then δ^{τ} agrees with δ^{i}

$$\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t \tag{*}$$

To study time-varying δ in finer detail, run daily rolling regressions:

- Use $\hat{\beta}$ from (*) to define "generic surprise" regressor $\hat{\beta} X_t$
- Estimate:

$$\Delta y_t = \alpha^{\tau} + \delta^{\tau} \hat{\beta} X_t + \varepsilon_t$$

where sample is 1-year rolling window centered around date au

• When $\tau =$ midpoint of year i, then δ^{τ} agrees with δ^{i}

Account for 2-stage sampling uncertainty in rolling regressions:

- Use standard errors for δ^i in (*) as benchmarks
- Interpolate between them using estimates for δ^{τ}

Time-Varying Sensitivity δ^{τ} , 3-month Treasury

Time-Varying Sensitivity δ^{τ} , 6-month Treasury

Time-Varying Sensitivity δ^{τ} , 1-year Treasury

Time-Varying Sensitivity δ^{τ} , 2-year Treasury

Time-Varying Sensitivity δ^{τ} , 5-year Treasury

Time-Varying Sensitivity δ^{τ} , 10-year Treasury

Private-Sector Expectations of Funds Rate "Liftoff"

Blue Chip Consensus expectation, time until first funds rate increase:

Private-Sector Expectations of Funds Rate "Liftoff"

Probability of funds rate < 50bp in 5 quarters, from options:

Implications for the Fiscal Multiplier

Implications for the Fiscal Multiplier

- A) liftoff in 4 qtrs. \Longrightarrow multiplier same as normal (CER 2011)
- B) liftoff in 8 qtrs. or more \Longrightarrow large multiplier (CER 2011)

Implications for the Fiscal Multiplier

- A) liftoff in 4 qtrs. ⇒ multiplier same as normal (CER 2011)
- B) liftoff in 8 qtrs. or more \Longrightarrow large multiplier (CER 2011)

This paper: 2008-10 look like scenario A

Conclusions

What we do:

- Test whether the ZLB is a significant constraint on interest rates.
- Measure the degree to which interest rates are constrained.

What we find:

 1- and 2-year Treasury yields were surprisingly responsive to news throughout much of 2008–11.

What we conclude:

- Effectiveness of monetary and fiscal policy likely close to normal throughout much of 2008–11.
- Zero lower bound a more severe constraint since mid-2011.